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Abstract— Under-canopy agricultural robots require robust
navigation capabilities to enable full autonomy but struggle
with tight row turning between crop rows due to degraded
GPS reception, visual aliasing, occlusion, and complex ve-
hicle dynamics. We propose an imitation learning approach
using diffusion policies to learn row turning behaviors from
demonstrations provided by human operators or privileged
controllers. Simulation experiments in a corn field environ-
ment show potential in learning this task with only visual
observations and velocity states. However, challenges remain
in maintaining control within rows and handling varied initial
conditions, highlighting areas for future improvement.

I. INTRODUCTION

Under-canopy agricultural robots have the potential to
autonomously navigate the narrow gap between crop rows for
plant-level monitoring and care. However, their development
has been hindered by challenges in reliable localization
and navigation within these occluded, visually homogeneous
environments [1]. While some progress has been made on
crop row following using classical computer vision [1],
[2] and learning [3] techniques, executing precise turns to
transition between rows remains an open challenge [4].

In open fields, agricultural robots typically rely on GPS for
localization and navigation [4]. However, GPS signal quality
severely degrades under dense crop canopies, necessitating
alternative navigation methods [5]. While depth sensors can
help, they are expensive, sensitive to clutter, and increase
system complexity [6]. Monocular RGB vision is appealing
for its simplicity and low cost, but turning is still difficult
due to the need to execute a tight maneuver in a highly
occluded scene with strong visual aliasing between the rows.
The complex dynamics of under-canopy robots with limited
clearance further complicate the control problem.

In this work, we propose to learn row turning policies from
demonstrations using imitation learning, specifically leverag-
ing the recent work diffusion models for policy synthesis [7],
[8]. Imitation learning is well-suited for acquiring complex
skills that are difficult to specify with hand-engineered
controllers [9] and can utilize demonstrations from human
teleoperators or privileged automated controllers. By includ-
ing recovery behaviors in the demonstrations, the learned
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policy can better handle a wider range of states, including
those that may occur due to gradual drift or minor errors
during operation. This expanded state coverage helps the
policy remain robust and effective even when faced with
situations that deviate from ideal conditions.

Diffusion models learn a denoising process from data that
can flexibly model complex distributions. While originally
developed for image generation, recent work has shown how
to leverage them as policy representations for robot learning
[7], [8]. We employ a conditional diffusion model to repre-
sent the row turning policy, where the conditioning input is
the RGB image and the output is the action distribution.

We evaluate our approach using a high-fidelity simulator
that models under-canopy navigation dynamics. This enables
extensive testing of our learned policies across diverse sce-
narios prior to real-world deployment.

II. APPROACH

Let O be the space of RGB camera observations from one
or more onboard cameras and A ⊆ Rm the space of robot
actions. The goal is to learn a policy π : O → P(A) mapping
observations to a distribution over actions to execute the row
turn. We collect a dataset D = {(oi,ai)}Ni=1 of observation-
action trajectories from demonstrations.

We employ a conditional denoising diffusion probabilistic
model (DDPM) [7], [10] to represent π. The DDPM com-
prises a forward noising process that gradually adds Gaussian
noise to an action sequence and a learned reverse process
that attempts to denoise the sequence when conditioned on
an observation. Formally, the forward process is:

q(at|at−1,o) = N (at;
√
1− βtat−1, βtI) (1)

where t ∈ {1, . . . , T} indexes the timestep, βt ∈ (0, 1)
is a variance schedule, and I is the identity matrix. The
reverse process pθ is parameterized by a neural network with
parameters θ that predicts the noise added at each step:

pθ(at−1|at,o) = N (at−1;µθ(at,o, t),Σθ(at,o, t)) (2)

where µθ and Σθ are the mean and covariance predicted
by the network. The network is trained to maximize the
variational lower bound on the log likelihood log pθ(a|o).
The training objective is:

L(θ) = Eq(a0:T |o)

[
log pθ(a0|a1,o)

−
T∑

t=2

DKL[q(at−1|at,o)∥pθ(at−1|at,o)]
]

(3)
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Fig. 1. Overview of the proposed method for learning row turning behaviors using diffusion policies. (Left) Demonstrations collected in the simulation
environment using human teleoperation and procedurally generated demonstrations that utilize privileged information. (Right) Architecture that takes in
RGB and robot state observation history and generates sequence of actions for execution.

To sample from the policy, we first sample aT ∼ N (0, I)
and then iteratively sample at−1 ∼ pθ(·|at,o) for t =
T, . . . , 1 using the learned reverse process.

III. EXPERIMENTS

We train and evaluate our approach in a simulated corn-
field environment using Gazebo. Our platform is Terrasentia
[11], a wheeled under-canopy agricultural robot that uses
a skid-steer drive mechanism. The robot is equipped with
three monocular RGB cameras: one on the front and one
on each side. We control the robot using a two-dimensional
action space consisting of linear and angular velocity. We

Fig. 2. Bird’s eye view visualization of trajectories in a corn field. Rows of
corn are represented using green solid lines. Each trajectory is represented
by a unique color, with •indicating the starting point and × marking the end
point. (Top) Sample expert demonstration trajectories collected for training
the policy. Multiple trajectories showcase the diversity of paths used in
the training data. (Bottom) Sample rollouts generated by the trained policy
for various initial conditions, illustrating the policy’s ability to produce
trajectories similar to the demonstration data.

collect demonstrations from two sources: a human operator

using a joystick controller and a model predictive controller
(MPC) with access to privileged state information. Our final
objective is to transfer the proposed system to the real
world, where only human demonstrations are feasible as a
source of supervision. This motivation drives our decision
to experiment with expert data from both MPC and human
operators. We randomize the environment by using different
corn models in the simulator. Our dataset comprises 350
demonstration trajectories. Importantly, the human operator
demonstrations include scenarios where the robot crashes
into corn and recovers from failures. We hypothesize that
these scenarios can improve the trained policy’s robustness
to domain shift during deployment. In this work, we focus
on the specific task of turning toward the left direction and
skipping one crop row.

Fig. 2 illustrates comparison trajectories between demon-
stration trajectories from the MPC and evaluation rollouts
from the learned policy, which we execute in a closed-loop
manner during testing. When initialized at the end of the row,
our learned policy successfully tracks the desired trajectory
to enter the desired row but fails after entering the row.
When initialized before the end of the row, the policy fails
by applying excessive angular velocities towards the left.
This brittle behavior within the corn rows might stem from
minimal variance in control output for these scenarios. The
policy appears to reach a suboptimal minimum by primarily
learning to minimize control prediction error during turns,
where angular velocity values are high. Consequently, it fails
to adequately learn appropriate behaviors for states before or
after the turn.

IV. FUTURE WORK

Our simulation experiments demonstrate the potential of
imitation learning with diffusion models for autonomous row
turning in under-canopy agricultural robots. While showing
promise in executing turn maneuvers, further research is
needed to fully realize this approach’s capabilities. Future
work will focus on goal conditioning to flexibly specify
different turning directions and target rows. We also plan to
deploy the proposed approach on real under-canopy robots
and integrate it with row following for end-to-end navigation.
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