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Abstract— Teleoperation is an important technology to enable
supervisors to control agricultural robots remotely. However,
environmental factors in dense crop rows and limitations in
network infrastructure hinder the reliability of data streamed to
teleoperators. These issues result in delayed and variable frame
rate video feeds that often deviate significantly from the robot’s
actual viewpoint. We propose a modular learning-based vision
pipeline to generate delay-compensated images in real-time for
supervisors. Our extensive offline evaluations demonstrate that
our method generates more accurate images compared to state-
of-the-art approaches in our setting. Additionally, we are one
of the few works to evaluate a delay-compensation method in
outdoor field environments with complex terrain on data from
a real robot in real-time. Additional videos are provided at
https://sites.google.com/illinois.edu/comp-teleop.

I. INTRODUCTION

Robots are finding their way into increasingly complex
application areas, spanning manufacturing, healthcare, se-
curity, entertainment, and other industries [1]. One such
field that has growing interest is the agriculture domain,
where mobile robots are used for phenotyping, enriching soil,
predicting yield, and more [2]. Although their autonomous
capabilities have drastically improved in recent years [3]–
[6], there still exist instances where it is preferred that
a human supervisor manually control the robot remotely
via teleoperation. During teleoperation, a supervisor views
a stream of data (e.g., video, pose) sent from the robot
and sends action commands through a remote controller, as
shown in Figure 1. In our case, a supervisor is needed to
visually inspect crops and manually control the robot when
the autonomy stack fails.

While teleoperation is a necessary technology for these
robots, we find through real-world testing that our organi-
zation’s existing teleoperation platform4 has several limita-
tions, including severe delay in communication between the
robot and supervisor, and intermittent transmission failures.
These transmission issues are caused by inherent delay in
sending information over a network with low bandwidth,
and moisture in the crops causing signal fades in parts of
the farm. Furthermore, the challenging under-canopy crop
environment and unpredictable weather patterns lead to un-
even terrain, causing large random deviations in consecutive
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Fig. 1. (a) The TerraSentia+ robot in dense growth and (b) an example
of a remote teleoperation setup.

camera poses. In extreme cases, severe delays may lead to
undesired robot crashes, causing catastrophic task failure.

While we cannot remove all instances of delays and frame
skips in the teleoperation pipeline, we can compensate for
missing information at any time by predicting the frame
to be shown to the supervisor. This task, known as frame
delay compensation or apparent latency reduction, is well
studied for indoor robots [7]–[9]. Although researchers have
tackled this problem in several domains, to the best of our
knowledge, few works study the effect of delay compensation
approaches on mobile robots deployed in outdoor scenar-
ios [10]–[17]. Even then, existing works each have their own
limitations, including only predicting latency-compensated
robot poses [11], being evaluated solely in simulation [11]–
[15], relying on access to an RGB-D camera during infer-
ence [10], [16], and using an over-simplified video prediction
model with assumptions that cannot be transferred to under-
canopy field robots [12], [13]. Additionally, most methods
have been tested in on-road driving environments with much
more predictable terrain and camera motion compared to the
under-canopy scenario [16], [17].

In contrast, our approach (1) predicts both robot poses
and camera images, (2) is tested on data from a real robot
in challenging field environments, (3) simply assumes access
to a monocular camera alongside an estimate of the robot’s
pose, and (4) uses learning-based approaches to accurately
and efficiently generate images. In particular, our modular
pipeline consists of a monocular metric depth estimation
(MDE) model, a robot kinematics model, an efficient sphere-
based renderer, and a learning-based inpainting model. No-
tably, we showcase the feasibility of finetuning state-of-
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the-art depth estimation foundation models to our complex
environment, with which we generate 3D colored point
clouds at runtime. A simple robot kinematics model is used
to predict future poses conditioned on user actions, which
are passed into a renderer to generate images. Finally, an
inpainting model fills in holes in the rendering before the
image is shown to the supervisor. We find the work presented
by Prakash et al. [16] is most related to our proposed method.
However, they rely on the availability of an RGB-D camera
at runtime, their method is applied to the autonomous driving
domain resulting in a simplified rendering approach, and
the authors do not provide quantitative results analyzing the
accuracy of generated images.

Our primary contributions are summarized as follows: we
(1) design an efficient modular pipeline for frame delay
compensation1, (2) extensively compare our pipeline with
ablations, classical image processing methods, and state-
of-the-art learning-based image generation approaches on
an offline crop dataset in diverse growth stages, and (3)
showcase the real-time operation of our approach on real-
world data by integrating our method into a ROS node.

II. RELATED WORKS

A. Time Delay Compensation for Robot Teleoperation

Teleoperation is a primary mode of control in robotics for
challenging tasks and environments where full automation is
still actively under development, like space exploration [18],
underwater operation [19], nuclear material handling [20],
and more [21]–[24]. In many of these applications, the hu-
man operator is expected to be far from the robot, introducing
issues of limited bandwidth and perception latency [7]. In
particular, high latency results in serious consequences where
real-time responsiveness is critical [25]. Different methodolo-
gies have been investigated to mitigate the impact of delays
on teleoperation, including devising a move-and-wait user
strategy for tasks which allow quasi-static operations [26],
and abstracting away low-level short-term control signals
with high-level long-term user commands [27]. Another
avenue of research for delay compensation is future frame
prediction [11]. By incorporating the operator control com-
mands, a simple method that uses sliding and zooming video
transformation for prediction can achieve impressive perfor-
mance gain in driving scenarios [13]. More recent efforts
are harnessing neural networks to account for missing details
from boundary disocclusions [14], [15], [17]. Note there are
very few works on delay compensation for field robots due
to the complexity of required networking infrastructure and
the unstructured nature of outdoor environments [10].

B. Video Prediction and View Synthesis

We specifically choose to tackle latency compensation
with video prediction methods. Early research in video
prediction focuses on deterministic models predicting in raw
pixel space [28], [29], which requires expensive image recon-
struction from scratch. To promote efficiency, later studies

1Code will be released upon acceptance.

pivoted towards high-level predictions in feature space, such
as optical flow in DMVFN [30] and segmentation maps in
S2S [31]. Such models often warp or inpaint input images
based on predicted image features for video prediction.
However, deterministic models inherently confine possible
motion outcomes to a single, fixed result, resulting in blurry
images [32]. To overcome this issue, SRVP [33], a variational
neural network, models the temporal evolution of the system
through a latent state, which is conditioned on learned
stochastic variables and is later transformed into predicted
images. In the domain of view synthesis, which is the task of
generating new views of a scene given one or more images,
the most similar work to ours is SynSin [34]. The end-to-
end model constructs a 3D point cloud of latent features,
which is then projected to the target view and inpainted
to generate the output image. Neural rendering often plays
an important role in such view synthesis algorithms [35].
Typical neural renderers require a mesh-based geometry
representation, which prohibits topology change and drags
rendering speed [36]–[38]. As a result, our work incorporates
a sphere-based renderer, Pulsar, which has been shown to
have real-time capability [39].

C. Monocular Depth Estimation with Deep Learning

Modular pipelines, like ours, may use a monocular depth
estimation model to predict the depth of pixels in camera
images. Deep learning methods in particular have produced
state-of-the-art results in this field. A pioneering work
proposed training a convolutional neural network (CNN)
combining global and local predictions to produce a final
depth output [40]. However, monocular MDE can be chal-
lenging due to varying scenes and sensors, and alternative
methods for relative depth estimation (RDE) have been
introduced [41], [42]. Later advancements also involved
using the Vision Transformer [43] as an encoder instead
of a CNN [44] to provide greater global image context
and improved prediction accuracy. However, training solely
on specialized datasets can result in poor estimates when
transferred to a new environment. MiDaS [42] attempts to
overcome this problem for RDE by mixing various datasets
together. ZoeDepth [45] extends this idea to MDE by first
pretraining a network on the relative depth estimation task,
and then finetuning a subset of parameters on the MDE task
with different datasets. Alternatively, powerful visual foun-
dation models, like DINOv2, can help mitigate the drop in
performance caused by domain shift [46]–[48]. Nonetheless,
collecting high-quality real-world labeled depth data for tasks
like finetuning remains challenging due to noise [48].

III. METHODS

A. Problem Formulation

We formulate the apparent latency reduction problem as a
video prediction task. Specifically, given a sequence of m+1
video frames It−m:t ∈ RH×W×3 and poses Pt−m:t ∈ R4×4

from time t−m to t from a camera with calibrated intrinsic
matrix K ∈ R3×3, we aim to predict It+1:t+n.
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Fig. 2. Block diagram of ROS pipeline. The robot sends sensor messages
(green) to our node. Functions are required to wait for mutex locks when
accessing or modifying global data (blue). The renderer generates images
that are 30 Hz apart to enable a consistent FPS display.

B. Choosing a Scene Representation

One common approach to generating future frames condi-
tioned on It−m:t, is to predict future 2D pixel flows Ft+1:t+n,
and iteratively applying the flows to It [49]–[51]. Although
effective in environments with smooth camera motions, flow-
based methods fail in deployments where consecutive input
frames appear far apart and have few correspondences, as is
the case in choppy low-bandwidth networks like our setting.

A simpler non-learning-based approach to predicting
It+1:t+n conditioned on just It, is to estimate the future
camera poses Pt+1:t+n, optimize for homography matrices
Ht+1:t+n, and apply each homography to It [12]. While
efficient, this method relies on a planar scene representation
of the world where most of the scene in front of the camera
is a flat plane. However, in the case of scenes with large
variance in object depths, camera motions will result in a
range of projected pixel locations in the future image plane.
This phenomena is particularly prevalent in environments
like cluttered crop rows, where closer crops will move larger
distances in the image plane when the camera shifts.

Rather than assuming the scene is a plane, given a depth
map Dt ∈ R(H·W )×1×1 of the distance to each pixel in It,
we calculate the 3D point cloud y in the camera frame:

y = K−1XD ∈ R(H·W )×3×1,

where X ∈ N(H·W )×3×1 is the homogeneous representation
of the pixel coordinates in It. Then, with an estimate of
future camera extrinsics P , we compute the unnormalized
projected pixel coordinates X̃ in the future images:

X̃ = KP
−1

PY ∈ R(H·W )×3×1; K = [K|0] ∈ R3×4,

where Y ∈ R(H·W )×4×1 is the homogeneous representation
of y. Finally, we normalize X̃ by the new depth of each point
to compute the projected homogeneous coordinates X .

Point cloud representations are versatile and common in
the vision community [52]–[54]. However, directly applying

the projection process above leads to several holes in the
rendered image where camera motion uncovered occlusions.
While 3D Gaussian Splatting [55] is a promising method
for rendering point clouds efficiently, the training time to
optimize gaussian parameters for describing a scene in high-
fidelity is still not real-time [56]–[59]. Instead, using the
efficient renderer discussed in Section III-E, we represent
our scene as a set of spheres, each with its own radius and
blending weight simply determined by their distances from
the camera, intrinsic parameters, and rasterization settings.

C. Depth Estimation

Before we can create a point cloud to render images from,
we need an estimate of the depth image D from I . RGB-D
stereo cameras enable an accurate measurement of D, but
the teleoperated robot may not have such a sensor installed.
Furthermore, from experiments, we have found our sensor’s
(ZED 2) depth measurement is noisy and has several holes
outdoors, which results in unknown pixels in the rendered
images. As such, we draw on the recent advancements in
depth estimation foundation models, and finetune the Depth
Anything V2 (DAv2) [47], [48] weights to our environment.
Given an input image I , DAv2 attempts to minimize the root
scale-invariant loss [40] between the predicted depth d̃(i) and
label d(i) at each pixel i ∈ 1 . . . N :

Ldepth =

√√√√ 1

N

N∑
i=1

dlog(i)2 −
λ

N2

(
N∑
i=1

dlog(i)

)2

,

where dlog(i) = log d(i)− log d̃(i), and λ ∈ R≥0 is a param-
eter to balance the accuracy and sharpness of predictions.

While DAv2 generates a large set of synthetic labels from
simulators, existing mobile robot crop row simulations are
too low-fidelity to curate an informative dataset from [60].
Instead, we randomly select a set of videos from a recent
real-world under-canopy mobile robot dataset collected by
Cuaran et al. [61], which includes ground truth depth from
a ZED 2 camera onboard a TerraSentia, and we finetune
DAv2-Small on a subset of images and pixels with known
depth. Although the labels are noisy, we find DAv2 is capable
of transferring to our environment. Further details about the
dataset and training procedure are provided in Section IV-A.

D. Future Pose Prediction

During real-world deployment, we need predictions of the
future trajectory of the robot so as to render subsequent
frames. Thus, we rely on a simple skid-steer kinematic model
to estimate the x and y position of the robot, as well as its
heading θ, given a linear v and angular ω velocity command:

ẋ = µv cos(θ); ẏ = µv sin(θ); θ̇ = ηω,

where µ and η are friction coefficients. Gasparino et al. [62]
predict these coefficients with a learned neural network. To
improve runtime efficiency and reduce memory usage, we
set µ = η = 1 during evaluation, effectively simplifying the
kinematics to the Dubins’ car model [63].



Fig. 3. A comparison of depth model estimates and resulting Pulsar
renderings with ground truth (GT). Holes in predictions are drawn green.

E. Rendering with Pulsar

Based on our discussions from Section III-B, we choose
to represent the environment as a set of colored spheres with
some opacity, and we use Pulsar [39] to render novel scenes
in real-time. Pulsar sets the radius r(i) of each sphere i in
the scene dynamically according to the distance between
the camera and sphere, normalized device coordinate (NDC)
intrinsics, and a chosen rasterization radius constant R:

r(i) =
RKw

∥∥P − p(i)
∥∥
2

2Kf
,

where Kw and Kf are the camera’s sensor width and focal
length respectively. Intuitively, points closer to the camera
are given smaller radii during rendering. Unlike the sampling
procedure of early neural radiance field approaches [64],
Pulsar only stores memory for occupied regions in space,
enabling efficient computation of the rendered color for a
pixel. In particular, Pulsar uses a softmax blending function
to weight overlapping points along a ray when rendering the
projected image (Eq. 1 from Lassner et al. [39]). Increasing
the γ parameter in this function enables us to raise the
transparency of nearby points. Finally, and arguably most
important for real-world deployment, Pulsar is integrated
into PyTorch [65], eliminating the bottleneck of transferring
DAv2 predictions or point clouds between libraries or de-
vices — required for other renderers [66], [67], and it is
implemented with specialized CUDA kernels that allow for
real-time rendering of images on our hardware.

F. Inpainting Network

Camera motion to the predicted future pose will lead to
holes in rendered images output from Pulsar, even with its
sphere representation. As such, like SynSin [34], we learn
a neural network to refine rendered images. Specifically,
after rendering a raw future image Ĩt+k, we first embed the
original image It and Ĩt+k through a ResNet-18 encoder
pretrained by Sivakumar et al. [4] on real-world TerraSentia
navigation data, storing intermediate hidden states for later
skip connections. We then concatenate both embeddings and
intermediate hidden states through a series of decoder blocks
consisting of convolution, batch normalization, ReLU, and
upsampling layers to reach the original resolution of It. The
inpainting model g is trained to minimize mean absolute

error between the prediction and the ground truth It+k:

Lrefine =
1

N

N∑
i=1

∣∣∣I(i)t+k − g (It, f (It, Dt, Pt, Pt+k))
(i)
∣∣∣ ,

where the function f outputs the raw rendered image Ĩt+k

with Pulsar. We find that after training, the refined images
are blurry, but generally resemble the shapes of objects in
the ground truth future frame. As such, during inference, we
only fill in holes in Ĩt+k with corresponding predictions from
g
(
It, Ĩt+k

)
, and display the final result to the supervisor.

Training details are provided in Section IV-A.

IV. OFFLINE EVALUATION

A. Experimental Setup

Dataset: We collect several data points from the public
dataset provided by Cuaran et al. [61] to train and evaluate
models on the video prediction task. Specifically, we extract
synchronized 720p images, depth maps, camera poses, and
action inputs at 16 Hz from several rosbags in different crop
growth stages. Our processed dataset contains 7382 training
and 1847 validation labels across 2 early-, 3 middle-, and
4 late-stage growth videos, while the test split holds 3100
labels from 1 video per growth stage. The sequences are
collected from a calibrated ZED 2 camera with neural depth
set to output a range between 0.2 and 20 meters.

Training: We finetune the DAv2-Small model pretrained
on the Virtual KITTI 2 [68] synthetic dataset for 120 epochs
with a batch size of 32 and learning rates of 5e−5 and 5e−4
for the DINOv2 [46] encoder and DPT [44] head weights
respectively. Images and labels are resized to 518 × 518
before training and we minimize the scale-invariant loss
against known ZED neural depth values. Then, we collect an
augmented dataset to train the inpainting model. Using the
finetuned depth model and Pulsar, we render projected 720p
training images at t += {1, 3, 5, 7} given ground truth future
poses. Pulsar is configured to store 1 sphere of R = 3e−3
per pixel, and γ = 0.1. Holes, or disocclusions, are rendered
as green. The inpainting model is trained to minimize Lrefine
using the ground truth future images as labels for 100 epochs
with a batch size of 16 and learning rate of 5e−4.

Baselines: We compare our pipeline against a variety of
other real-time video prediction and latency-compensation
approaches, including: (1) a non-learning-based approach
presented by Moniruzzaman et al. [13] that predicts a
cropped window within It conditioned on robot state and
action input, and returns an upsampled version of the win-
dow to the user (denoted as C+S for crop and scale); (2)
SRVP [33], a variational neural network trained to learn a
distribution of latent states, which are sampled to generate
future images; (3) DMVFN [30], a state-of-the-art flow-based
video prediction model; and (4), the end-to-end novel view-
synthesis model SynSin [34], which renders images from
a point cloud of latent features. To predict longer horizon
sequences from SRVP and DMVFN, we iteratively use inter-
mediate predictions to generate future frames. During offline
evaluation, we assume SynSin and our pipeline have access



TABLE I
AVERAGE ACCURACY OF METRIC DEPTH MODELS ACROSS DIFFERENT CROP GROWTH STAGES. MODELS PREDICT DEPTH IN METERS.
ABSREL IS BETTER WHEN LOWER, WHILE HIGHER VALUES OF δ1 , PSNR, AND FPS ARE DESIRED. FPS IS MEASURED ON A 2080 GPU.

Model Early (45% ZED Holes) Middle (0.036% ZED Holes) Late (0.037% ZED Holes) Average (14% ZED Holes) FPS
AbsRel δ1 PSNRt+5 AbsRel δ1 PSNRt+5 AbsRel δ1 PSNRt+5 AbsRel δ1 PSNRt+5

DINOv2-Terra 0.101 0.889 18.467 0.212 0.681 11.233 0.242 0.608 12.149 0.186 0.722 13.901 41
DAv2-vKITTI 0.982 0.076 — 1.007 0.075 — 0.811 0.170 — 0.929 0.108 — 58
DAv2-Terra 0.128 0.783 18.848 0.289 0.555 11.044 0.331 0.500 12.018 0.251 0.609 13.917 58

TABLE II
IMAGE INPAINTING QUALITY OF DIFFERENT MODELS.

ALL THREE METRICS ARE BETTER WHEN HIGHER.

Metric Delay Telea [69] ResNet-L1 ResNet-MS-SSIM

PSNR t+ 5 14.278 14.377 14.351
t+ 10 13.482 13.937 13.853

MS-SSIM t+ 5 0.343 0.342 0.342
t+ 10 0.285 0.287 0.285

FPS 0.386 36 36

to ground truth future poses for rendering, and we apply our
pose prediction model on real-time data in Section V.

B. Results

Depth Model Analysis: Recall that the purpose of learning
our own local metric depth model is to allow our pipeline
to work with robots without depth sensors, make up for
low-bandwidth network properties that limit the reliability
of receiving depth frames from the robot, and to generate
complete depth images where standard sensors are noisy. As
such, to generate accurate future projections, it is important
to learn a reliable depth model. Leveraging DAv2, we first
explore the feasibility of finetuning foundation models to
our specific environment. In Table I, we report the average
absolute relative error (AbsRel) and δ1 against known ground
truth ZED values. Across all three test growth stages, we
outperform the pretrained DAv2 model significantly.

Tangentially, to evaluate the sensitivity of finetuned ac-
curacy to the pretraining dataset and task loss, we further
perform a comparative study by finetuning a DINOv2 [46]
model pretrained with sparse labels from the real-world
KITTI dataset on the RDE task. Impressively, we find
DINOv2 outperforms DAv2-Terra in depth accuracy, even
though it has been pretrained on a different task. However,
strictly looking at depth accuracy against ZED values gives
a skewed understanding of the usability of the model for
downstream rendering, since ZED does not provide labels for
pixels that are outside of the camera’s defined range. As such,
several sky pixels are not accounted for in the computation of
depth accuracy. To compare the quality of depth predictions
for downstream rendering, we generate delayed reprojections
of each test video using Pulsar (γ = 1e−5) with ground truth
future poses. Then, we compute the PSNR of valid projected
pixels in each predicted image against the ground truth future
image. Here, we see that DAv2-Terra produces higher PSNR
for early stage videos, where there are large patches of sky
pixels, hinting that the finetuned DINOv2 model predicts sky
depth inaccurately.

Fig. 4. Examples of ResNet inpainting model predictions.

To test this hypothesis qualitatively, we visualize depth im-
ages from ZED, DINOv2, and DAv2, along with their future
Pulsar renderings in Figure 3. Unsurprisingly, we see ZED
reprojections align well with ground truth images, but have
several holes (green). Corroborating our hypothesis, we find
DINOv2 generates inaccurate metric depth in sky regions,
resulting in undesired warping in image generations. Finally,
the finetuned DAv2 model has some inaccuracies in depth
images, but the errors are minor enough to result in a well-
aligned reprojection prior to inpainting. As such, considering
the quality of renderings and the model’s runtime speed, we
choose DAv2-Terra as our pipeline’s depth estimator.

Inpainting Quality: With enough camera motion, any
depth estimate used for reprojecting future frames with Pul-
sar will result in disocclusions in the rendered image. To fill
in these new holes, we train a ResNet-based model to predict
cleaned versions of the future frame. In Table II, we report
the average quality of image generations from three different
inpainting models on 5- and 10-timestep delayed test video
feeds. We first evaluate the model proposed by Telea [69],
which is used in the predictive display pipeline presented by
Prakash et al. [16]. While this approach achieves similar MS-
SSIM to our ResNet models, it cannot run in real-time on our
8 core Intel i7-9700 CPU. Particularly, the iterative inpainting
algorithm takes considerably longer time to predict pixels
for images with larger and more disjoint holes. While early
stage images took on average 91 ms to paint, each late
stage reprojection took upwards of 5 seconds. In contrast,
our ResNet model running on a 2080 GPU operates at 36
FPS with 720p input, and generates higher quality images.

As an ablation study, we train an additional inpainting
model with the same architecture using MS-SSIM as its
loss function, following recent findings from Shi et al. [70],
who report the superiority of structural similarity index
measure-based losses for image generation. Qualitatively, we
find the raw predictions output by ResNet-MS-SSIM are
sharper than the model trained with L1 loss in the regions



TABLE III
GENERATION QUALITY OF VIDEO PREDICTION METHODS ACROSS CROP GROWTH STAGES AND TIME DELAYS ON OFFLINE DATA.

PSNR, MS-SSIM, AND FPS ARE BETTER WHEN HIGHER, WHILE LPIPS IS BETTER WHEN LOWER. UNDERLINE DENOTES SECOND-BEST.

Model Metric Early Middle Late Average FPS
t+ 1 t+ 5 t+ 10 t+ 1 t+ 5 t+ 10 t+ 1 t+ 5 t+ 10 t+ 1 t+ 5 t+ 10

C+S [13]
PSNR 15.010 14.279 13.913 10.327 9.993 9.816 11.195 11.021 10.914 12.151 11.744 11.531

28MS-SSIM 0.292 0.276 0.271 0.125 0.107 0.097 0.146 0.137 0.133 0.186 0.172 0.166
LPIPS 0.546 0.580 0.603 0.575 0.624 0.653 0.625 0.652 0.671 0.583 0.619 0.643

SRVP [33]
PSNR 18.857 16.504 13.541 11.872 11.760 11.613 12.740 12.846 12.616 14.441 13.680 12.592

66MS-SSIM 0.440 0.390 0.316 0.187 0.180 0.182 0.221 0.227 0.225 0.280 0.264 0.240
LPIPS 0.679 0.790 0.877 0.760 0.842 0.859 0.748 0.823 0.836 0.729 0.818 0.856

DMVFN [30]
PSNR 19.605 17.708 17.228 11.821 10.702 10.613 13.445 12.071 11.784 14.917 13.456 13.170

28MS-SSIM 0.487 0.430 0.418 0.241 0.222 0.223 0.317 0.289 0.277 0.347 0.313 0.305
LPIPS 0.379 0.629 0.697 0.604 0.840 0.880 0.564 0.790 0.855 0.516 0.753 0.811

SynSin [34]
PSNR 17.876 15.602 14.635 11.839 10.875 10.639 12.915 12.172 11.896 14.175 12.865 12.378

13MS-SSIM 0.385 0.332 0.324 0.180 0.136 0.133 0.243 0.209 0.202 0.268 0.225 0.219
LPIPS 0.580 0.643 0.672 0.703 0.763 0.781 0.689 0.730 0.748 0.658 0.712 0.734

Ours
PSNR 21.811 19.638 18.832 13.496 11.267 10.918 13.999 12.392 12.203 16.369 14.377 13.937

13†MS-SSIM 0.725 0.571 0.497 0.461 0.220 0.161 0.421 0.245 0.210 0.532 0.342 0.287
LPIPS 0.276 0.366 0.416 0.450 0.595 0.632 0.482 0.580 0.628 0.404 0.515 0.560

†Note that our ROS implementation runs DAv2 and Pulsar asynchronously, enabling a higher frame rate on real-time experiments.

without disocclusions in the reprojected image. However,
once we use the raw prediction to fill in holes from the
reprojection, we see the painted regions contrast heavily with
the remainder of the image. On the other hand, while L1
loss leads to blurrier raw predictions, the predictions for
disoccluded patches in reprojected image blend in smoother,
resulting in a higher PSNR. Thus, we use the ResNet model
trained with L1 loss as our inpainting model. Examples of
model predictions are provided in Figure 4.

Comparison to Baselines: We present results on the accu-
racy of model predictions across each test video and different
time delays in Table III and example generations are provided
in the supplentary video. Generally, we find all methods
perform best on early stage sequences compared to middle
and late stage images due to fewer occlusions. Similarly, as
expected, larger delays lead to worse generations. However,
on average across the board, our method outperforms the oth-
ers in all three metrics. Particularly, C+S generates cropped
and resized images which have high perceptual similarity
to the original scene, but in fact align poorly with the true
image. Iterative approaches like SRVP and DMVFN incre-
mentally produce more blurred, incomprehensible outputs as
intermediate errors compound. Finally, we find SynSin is
unable to learn accurate enough depth or CNN features to
decode future states accurately. SRVP realizes the closest
results to ours in late stage PSNR, but it requires training
over five days on two NVIDIA A100 GPUs with 256× 256
resolution images, whereas finetuning DAv2 and training our
inpainting model each took one day on half the compute
with the full resolution images. DMVFN similarly achieves
comparable MS-SSIM, but its blurry generations result in
poor LPIPS. However, it is worth noting that C+S, SynSin,
and our model predicts future frames assuming the world is
static, resulting in inaccurate results when wind or the robot
itself moves crops. We also find all methods perform poorly
when conditioning generations on an occluded frame, leading
us to develop real-time occlusion filters in future work.

V. REAL-TIME EXPERIMENTS

We also develop a ROS node to deploy our delay compen-
sation method in real-time on TerraSentia rosbags. A block
diagram of the node is shown in Figure 2. To test the quality
of the real-time compensated video feed, we emulate the
conditions of varying network settings by skipping 5 and 10
frames (effectively requiring to compensate for 6 and 3 FPS
videos respectively, from a 30 Hz stream), and applying 250
and 500 ms delays to real-world rosbags in different growth
stages. Resulting videos are provided in the supplementary
material. We qualitatively find our model is capable of
compensating for different frame rates and delays. However,
noisy odometry measurements and poor predictions from our
simplistic kinematic model lead to undesired jumps in the
generated video under worse conditions.

VI. CONCLUSION

We present an efficient and accurate modular learning-
based pipeline for frame delay compensation in outdoor mo-
bile robot teleoperation. Future work includes integrating our
ROS node into the real-world robot, developing controllers
on the robot to compensate for delayed commands, and
performing a large-scale user study to assess usability.
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