
© Spring 2024 Yixiao Fang

DYNAMIC VIEW SYNTHESIS IN UNSTRUCTURED
FIELD ENVIRONMENTS

BY

YIXIAO FANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Electrical and Computer Engineering

in the Undergraduate College of the
University of Illinois Urbana-Champaign, Spring 2024

Urbana, Illinois

Advisor:

Professor Katherine Driggs-Campbell

ABSTRACT

The method of generating new views of a scene from novel perspectives,

known as view synthesis, has seen remarkable progress thanks to advances

in computer vision, machine learning, and graphics. This technology is in-

creasingly being applied in various fields, including autonomous vehicles and

robotics. For instance, robots equipped with view synthesis capabilities can

be deployed in hazardous or inaccessible environments for inspection and

surveillance tasks. Synthesizing views from limited input images can provide

comprehensive visual information to make informed decisions without being

physically present. This senior thesis delves into the development and impor-

tance of dynamic view synthesis techniques, focusing on their critical role in

robotics, especially for enhancing the video frame rate during the teleopera-

tion of agricultural robots. This application is crucial for remote operators to

make timely and informed decisions. A new method is proposed that merges

existing dynamic view synthesis techniques with monocular depth estimation

to generate more accurate predictions under low communication bandwidth

settings. Predicted images are fed to a remote operator to increase the frame

rate of the video feed. Initial results on a large offline dataset collected from

the field suggest the technique’s viability, and additional real-world robot

experiments are planned for the near future to test its real-time operational

capability.

Subject Keywords: Agricultural Robots; Teleoperation System; Computer

Vision; View Synthesis; Monocular Depth Estimation

ii

To the ones who love me, for their unrequited support.

iii

ACKNOWLEDGMENTS

I would like to extend my deepest gratitude to my advisor, Professor Kather-

ine Driggs-Campbell, and my graduate student mentor, Neeloy Chakraborty.

Their expertise, understanding, and patience, added considerably to my un-

dergraduate experience. With their assistance, I was able to recognize my

interest in robotics and artificial intelligence at an early stage and lead to this

thesis to conclude my undergraduate study. Their guidance was invaluable in

the planning, conduct, and analysis of my research, and the insightful feed-

back pushed me to sharpen my thinking and brought my work to a higher

level. Their willingness to give their time so generously has also been very

much appreciated.

I am also profoundly grateful to the group of graduate students with whom

I have shared the journey of my undergraduate study within the Human-

Centered Autonomy Lab. Working alongside Weihang Liang, Ye-Ji Mun,

Andre Schreiber, Tianchen Ji, Haonan Chen, and others has been an invalu-

able aspect of my experience. Their support and care have made the lab a

space where I felt welcomed and valued. Looking ahead, I am eager to explore

opportunities for future collaboration with them and continue contributing

to the field of robotics.

Finally, I want to express my gratitude to students of the Distributed

Autonomous Systems Laboratory at UIUC, especially Jose Cuaran, Arun

Narenthiran Sivakumar and Mateus Valverde Gasparino for providing the

dataset used for model training.

iv

TABLE OF CONTENTS

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contributions . 2

2 RELATED WORKS . 3
2.1 Video Prediction . 3
2.2 View Synthesis . 4
2.3 Image and Video Inpainting 4
2.4 Monocular Depth Estimation 5

3 BACKGROUND . 7
3.1 Problem Formulation . 7
3.2 Temporal View Synthesis . 7
3.3 Multi-Plane Images (MPI) . 8

4 METHODOLOGY . 10
4.1 Dynamic View Synthesis Model 10
4.2 Monocular Depth Estimation Model 11

5 RESULTS . 22
5.1 Dataset . 22
5.2 Performance of Monocular Depth Estimation 22
5.3 Performance of Dynamic View Synthesis 24

6 CONCLUSION AND FUTURE WORK 28

REFERENCES . 30

v

1 INTRODUCTION

1.1 Motivation

The term teleoperation refers to the remote control of machines or systems

from a distance, where the operator is not physically present at the site of

the machine. This technology is typically used in environments that are haz-

ardous, inaccessible, or too remote for direct human intervention, such as

deep-sea exploration, space missions, or robotic surgery. Teleoperation sys-

tems often include cameras and sensors to provide the operator with real-time

feedback, enhancing control and interaction despite the physical separation.

Teleoperation systems can also be deployed in agricultural field environ-

ments to control agricultural robots. However, similar to other applications,

teleoperation systems in fields suffer from significant latency. Latency typi-

cally occurs for the data transmission between robots and the base station.

For instance, images transmitted back from the robot can be delayed, and

the operator’s command cannot be processed by the robot timely. The re-

duction of latency can lead to improvements in both user experience and

safety considerations. Especially when agricultural robots are deployed in

dynamic and complex field environments, latency can introduce significant

risks, undermining the operator’s ability to make timely decisions and react

to unforeseen events. Where the robots travel through rows of stalks, large-

scale leaves and branches can partially block the camera. With significant

latency, the operator will fail to prevent accidents or damage, posing a di-

rect threat to the safety of both the operational environment and the robot

itself. Therefore, addressing latency is essential not only for enhancing the

efficiency and reliability of teleoperated systems but also for ensuring the

safety and success of missions in complex, unstructured field environments.

As such, one direction of works rely on view synthesis to address this issue.

View synthesis is a technique in computer graphics and vision that involves

generating new images of a scene from viewpoints that were not originally

1

captured by cameras. This process uses existing images or video frames along

with depth information or geometric data about the scene to interpolate or

extrapolate new views. View synthesis techniques can be used to increase the

frame rate of video sequences at the base station. After the updated robot

pose is transmitted back to the base station, we can immediately predict

the updated frame without waiting to receive it from the robot, thereby

improving the effectiveness of monitoring and manipulating field robots.

Predicting future frames in a video sequence conditioned on past images

is challenging in unstructured field environments. Recent work on video

prediction achieves excellent performance by leveraging the use of geomet-

rical information of the environment. SynSin [1], a view synthesis model,

is commonly used to extract the 3D geometry of the world from a single

image. However, verified thorough experiments, training the SynSin model

on images collected in fields does not provide promising results as expected,

partially due to complex and unstructured features from field environments.

Therefore, we searched for other geometry-based methods and landed on the

work by Nagabhushan et al.[2], where the authors apply optical flow and

multi-plane images to accurately predict object motion, eventually assisting

in forming future frames. Nevertheless, their work is only evaluated on data

collected from simulators, which implies the availability of accurate depth

maps that are not presented in field environments. Thus, additional work

can be done to produce accurate depth map by using techniques such as

monocular depth estimation.

1.2 Contributions

We present the following contributions:

• We refine an existing framework of dynamic view synthesis to be applied

in unstructured field environments.

• We build upon the state-of-art monocular depth estimation model, de-

veloping a more efficient framework to estimate metric depth in un-

structured field environments, and incorporate it within the view syn-

thesis model.

2

2 RELATED WORKS

2.1 Video Prediction

In recent years, learning-based strategies for video prediction have demon-

strated significant promise, as evidenced by a series of studies [3, 4, 5]. Within

this domain, a considerable portion of research has achieved success in the

specific area of temporal video prediction. This concept revolves around

the prediction of future video frames over a brief timeframe. For instance,

research indicated by Villegase et al.[5] introduces methodologies that prior-

itize predicting the overarching structure of future frames rather than their

individual pixels, yielding encouraging outcomes.

However, a common limitation among these studies is the presumption

of a static background, implying that objects within the scene remain mo-

tionless over short intervals. To address the challenges posed by dynamic

backgrounds, certain approaches have adopted optical flow techniques [6].

This method allows for the separate estimation of pixel velocities for both

dynamic and static objects, facilitating the construction of predicted frames.

Yet, this strategy is limited to considering the movement of pixels across the

2D plane of the image, neglecting the 3D geometry of the scene.

In addition to methods based on optical flow, some researchers have ex-

plored geometry-based frameworks for temporal video prediction [7]. These

methodologies typically leverage depth data, RGB frames, and accurate pre-

dictions of camera movements in the future. Such approaches share similar-

ities with the objectives of view synthesis. However, in contrast to temporal

view synthesis, which employs both camera motion and depth information,

temporal video prediction models often exclude these critical elements. In-

stead, the focus of temporal view synthesis is on utilizing camera movements

to specifically predict the local motion of objects, distinguishing it from the

broader aims of temporal video prediction.

3

2.2 View Synthesis

View Synthesis is the process of creating an image from a new viewpoint

using one or more images from different viewpoints. These models usually

require the camera’s position to be known, while the depth remains to be

determined. Depth can be learned either by directly estimating it or through

indirect methods like Multiplane Images (MPI) [8] or the more recent Neural

Radiance Fields (NeRF) [9] techniques, which have shown promising results

in view synthesis. Depth Image Based Rendering (DIBR) [10] models, on

the other hand, operate under the assumption that depth information is

available, using a warp-and-infill strategy to address disocclusions, with some

methods focusing on removing foreground objects to reconstruct and infill the

background before applying motion compensation.

Various strategies have been explored for temporal view synthesis, which

deals with static scenes, and dynamic view synthesis, which focuses on creat-

ing video frames of a dynamic scene from a new viewpoint. These methods

include leveraging both single-view and multi-view depth information [11],

employing static and dynamic versions of NeRF [12], and utilizing MPI rep-

resentations. However, these methods generally assume the scene does not

change between views and do not account for object motion.

Somraj et al. combine the idea of optical-flow based methods of video pre-

diction and recent work of view synthesis to construct a novel dynamic view

synthesis model by decoupling camera and object motion [2]. However, their

work assumes that ground-truth depth information is available at every time

step, which is not a valid assumption for most robotics applications. Espe-

cially in extremely unstructured environments, depth information captured

by cameras is usually corrupted.

2.3 Image and Video Inpainting

View synthesis methods usually face the challenge of generating unseen parts

in the 3D world when the camera moves to new poses. In the setting of view

synthesis, the step of warping a current frame image to a new image based

on future camera pose and depth information is crucial. However, the image

after warping may contain holes because some regions become unobstructed

4

in the new frame. Kanchana et al. show that the disoccluded pixels can be

infilled by copying intensities from around pixels given that temporal view

synthesis considers closely adjacent frames [13].

2.4 Monocular Depth Estimation

2.4.1 Single-Image Depth Estimation (SIDE)

Supervised techniques for inferring depth from a single image generally fall

into two categories: those that estimate metric depth [14, 15] and those

focused on relative depth [16]. Metric depth models, often trained on specific

datasets, tend to be more prone to overfitting and usually struggle to adapt

to new settings or varying depth scales. Conversely, relative depth models,

trained across a broader range of datasets with annotations of relative depth

and employing scale-invariant losses, boast greater adaptability. However,

their utility is limited in scenarios requiring precise metric depth information,

as they yield depth estimates without a specific scale or shift.

In a novel approach, Bhat and colleagues have merged the methodologies

of these two approaches to create a depth estimation model named ZoeDepth

[17]. This model stands out for its superior ability to generalize across dif-

ferent environments while preserving metric scale accuracy. However, the

model’s complexity leads to prolonged inference times, rendering it imprac-

tical for applications needing to enhance frame rates in real-time.

2.4.2 DINOv2

DINOv2 [18], building on the self-supervised learning framework of its pre-

decessor, DINO [19], represents the state-of-the-art for monocular relative

depth estimation. While not specifically designed for depth estimation, DI-

NOv2’s sophisticated learning framework offers valuable tools for improving

accuracy and generalization in monocular depth estimation models. By lever-

aging its advanced capabilities in learning rich visual representations without

labeled data, DINOv2 could significantly improve feature extraction, making

it adept at identifying depth-related cues from single images. Its potential

for self-supervised learning addresses the challenge of scarce labeled depth

5

data, allowing for effective scaling of training processes. Furthermore, the

transferability of the learned features to depth estimation tasks, possibly aug-

mented by attention mechanisms, could enhance model performance across

varied environments and conditions. However, with its limitation of relative

depth estimation, the model along can hardly be applied to our application.

Similar to ZoeDepth, it suffers from the problem of long inference time to be

run in real-time.

6

3 BACKGROUND

3.1 Problem Formulation

The task of applying dynamic view synthesis for frame rate upsampling by

k times can be formulated as below:

• Given previous frames {fn−ak, ..., fn−k, fn}, corresponding depth maps

{dn−ak, ..., dn−k, dn}, extrinsic camera poses {Tn−ak, ...,Tn−k,Tn}, cam-

era intrinsic matrix K, and future extrinsic camera poses {Tn+1,Tn+2,

...,Tn+k−1}, predict {fn+1, fn+2, ..., fn+k−1}. a represents the number

of past frames we consider.

• In this thesis, by considering the computational constraint in real-time,

we simplify this problem formulation by setting a = 1 and k = 2. Thus,

the task becomes: Given previous frames {fn−2, fn}, corresponding

depth maps {dn−2, dn}, extrinsic camera poses {Tn−2,Tn}, camera in-

trinsic matrix K, and future extrinsic camera poses {Tn+1}, predict
{fn+1}.

– For the problem formulation we define, the previous frame fn−1 is

not given as it is a frame that should be predicted by the model

at the previous time step.

3.2 Temporal View Synthesis

We now describe the problem formulation of temporal view synthesis. For

the basic task of temporal view synthesis, we assume the scene is static and

objects are stationary, which means motion in the video only comes from

egomotion (camera motion).

7

• Given the current frame fn, the corresponding depth map dn, and trans-

formation matrix of the camera Tn from fn to fn+1, the goal is to

predict the frame fn+1.

• To predict fn+1, we can warp homogeneous pixel coordinates in fn to

fn+1 by using the transformation matrix and depth map:

pw
n+1 = KG{TnF{dn(pn)K

−1pn}} (3.1)

pn is a 2D pixel homogeneous location of the frame fn. K is the camera

intrinsic matrix. Functions F and G represent the transformation from

3×1 to 4×1 vectors and vice versa. By performing this operation, pixel

intensities in fn+1 can be estimated for regions that can be mapped to

fn. Besides these known regions, there are other pixels which cannot

be interpolated from fn, due to the fact that those regions in the 3D

world are not in the view of the camera in fn.

For our problem statement we cannot directly apply this solution of view

synthesis since it is invalid to assume objects in agricultural fields are static.

3.3 Multi-Plane Images (MPI)

Our work is based on the dynamic view synthesis model proposed by Som-

raj et al. [2], in which the authors apply the idea of MPI representation,

originally introduced by Zhou et al. [20], when estimating optical flow.

Zhou et al. introduced the concept of expanding a 2D RGB frame into a

multi-plane image consisting of several RGBA planes positioned at varying

depths. In each plane, the alpha channel (α, ranging from 0 to 1) indicates

the presence of scene elements at that specific depth. Somraj etc. generate

the MPI directly using an RGB-D image, leveraging the depth information

it provides. To do this, they uniformly select Z planes across the inverse

depth range from the scene’s minimum to maximum depths. At every pixel

location x, they assign α = 1 to the plane that is closest to the actual

depth of x, while setting α = 0 in all other planes, effectively creating a

one-hot vector of α values at each location x. We enhance the MPI format

to include actual depth values in an extra channel, alongside the existing

8

Figure 3.1: Example of MPI representation [2]

RGBA channels. Thus, the MPI format is represented as mn = {cn, dn, αn},
where cn, dn, and αn correspond to the RGB, depth, and alpha channels,

respectively. For warping an MPI to a different camera perspective, Somraj

et al. utilize reprojection and bilinear splatting techniques [13] similar to the

one used by temporal view synthesis discussed in 3.2. Lastly, to compose

a 2D frame from an MPI, they apply alpha compositing in a back-to-front

sequence using the established over operation [20].

9

4 METHODOLOGY

4.1 Dynamic View Synthesis Model

We adapt the work of Somraj et al. [2] to implement dynamic view synthesis

by generally following the approach described below.

As mentioned in Section 3.1, initially we are given the RGB images {fn−2, fn},
camera intrinsic matrix K, camera poses {Tn−2, Tn, Tn+1}, and depth maps

{dn−2, dn}. The goal is to predict fn+1.

Algorithm 1 Dynamic View Synthesis Algorithm

mn ←MPI(fn, dn)
mn−2 ←MPI(fn−2, dn−2) ▷ Create MPI representations for fn and fn−2

mw
n−2 ← Warp(Tn−2, Tn,mn−2) ▷ Warp mn−2 in the view of Tn

un→n−2 ← 3D optical flow between mn and mw
n−2

ûn→n+1 ← interpolate(un→n−2) ▷ Interpolate future object motion
m̂w

n ← Warp(Tn+1, Tn,mn) ▷ Warp mn in the view of Tn+1

m̂n+1 ← ûn→n+1 + m̂w
n ▷ Combine object motion with m̂w

n

fn+1 ← infilling and alpha composition from m̂n+1

Figure 4.1 provides a details of the model structure.

Figure 4.1: Flow diagram of the dynamic view synthesis model [2]

10

4.2 Monocular Depth Estimation Model

The dynamic view synthesis model requires accurate depth maps, which are

difficult to acquire in agricultural fields, as the unstructured environment

causes the cameras to record noisy, oftentimes sparse, depth data, as shown

in Figure 4.3. Thus, we decide to apply monocular depth estimation models

to obtain dense depth.

The aforementioned two monocular depth estimation models ZoeDepth

[17] and DINOv2 [18] both have their advantages and disadvantages. The

most significant issue is the inference time. For both models, the inference

time on a single RGB image with size 1280×720 is around 2 seconds, using a

RTX 2080 GPU, which is not feasible to run in real-time. In terms of quality

of the results, ZoeDepth and DINOv2 slightly differ. DINOv2 outperforms

ZoeDepth in terms of estimating depth for tiny features, given its robuts

feature extraction model. However, one obvious disadvantage of DINOv2 is

that it can only estimate relative depth. Comparison of their performance

can be drawn visually from Figure 4.4 and 4.5.

Therefore, we decide to adapt the backbone of DINOv2 and apply some

modifications to decrease the inference time, which will be further discussed

in section 4.2.2. Before we can train the model, we need to have access to

ground-truth depth maps, but it is impossible to obtain dense depth maps

for unstructured field environments, as mentioned before. As a result, we

leverage ZoeDepth and DINOv2 to build pseudo ground-truth depth maps

in meters.

4.2.1 Pseudo Ground-truth Depth Map

For a single RGB image, given DINOv2, we can obtain an accurate relative

depth map dr. Relative depth map is constructed with depth values between

0 and 1 {0 ≤ dr(x, y) ≤ 1}. Given ZoeDepth, we can obtain a less accurate

metric depth dm. Given the internal attributes of relative and metric depth,

all the depth values in dr should form a linear relationship with corresponding

depth values in dm if both depth maps are accurate. Thus, using a linear

regression model, we can fit a linear function that relates dr and dm for every

11

Figure 4.2: RGB image

Figure 4.3: Sparse depth map from the camera; White spots are holes that
cannot be predicted by the camera

12

Figure 4.4: Metric depth estimation from ZoeDepth

Figure 4.5: Relative depth estimation from DINOv2

13

Figure 4.6: Metric depth and relative depth (DINOv2 and ZoeDepth, Avg)

RGB image in the dataset respectively:

dm = f(dr)

To form the final pseudo ground-truth depth map, we apply the function f(·)
to dr and obtain dpseudo. Figure 4.8 shows an example of the result.

14

Figure 4.7: Metric depth and relative depth (DINOv2 and ZoeDepth, Raw)

Figure 4.8: Example of the pseudo ground-truth depth map

15

Figure 4.9: Metric depth and relative depth (DINOv2 and sparse depth,
Avg)

Originally, one relative depth value can correspond to multiple metric

depth values, as shown in Figure 4.7, which is foreseeable since the two depth

maps are generated by two different models. We cannot guarantee there is

a one-to-one mapping between relative and metric depth. As a result, the

fitted line will be affected by some noisy data points. Therefore, for every

relative depth, we average its corresponding metric depth values and fit a

linear relationship based on that as shown in Figure 4.6.

Either using averaged or raw data, we we are unable to replace dm, the

metric depth from ZoeDepth, with draw, which is the original metric depth

map collected by the depth camera. This conclusion is based on experiments

that intend to fit a linear relationship between dr and draw. Due to the

sparsity and noisiness of draw, a linear function can hardly be solved. Results

are shown in Figure 4.9 and Figure 4.10.

4.2.2 Modifications based on DINOv2

The general structure of DINOv2 model can be summarized as follows. The

model follows the popular encoder-decoder architecture. The encoder, also

known as the DINO backbone, is the key part that is used to learn numerous

16

Figure 4.10: Metric depth and relative depth (DINOv2 and sparse depth,
Raw)

Figure 4.11: DPT model structure [21]

features from a single RGB images. The decoder, also known as the DPT

head, is originally adapted from [21]. The major role of the decoder is to

decode encoded features to dense image output by using a convolutional

neural network.

As the DINO backbone proves to be powerful for learning features from

images, we choose to keep it unchanged in our model. In addition, since one

of our goals is to minimize the model inference time, we adapt the smallest

pretrained backbone, vits14. For the decoder part, we reduce the number of

convolutional layers for the Fusion block and modify the structure of final

depth head, denoted as Head.

17

We design two distinct architectures for the depth head for two different

purposes. The first task is metric depth estimation. Additionally, due to

limitations of DINOv2 and ZoeDepth, both models cannot produce satisfying

results when estimating depth of objects far from the camera, particularly,

depth for the sky. Figure 4.12 shows the limitation to when estimating the

depth for sky. Thus, the second task is to classify regions of the sky from

the RGB image and assign infinity depth value afterwards.

The method to build the complete depth estimation model can be sum-

marized as follow:

• Given the approach describe in 4.2.1, a training dataset D1 can be

constructed:

D1 = {Iraw,Dpseudo,Draw,Msky}

where Iraw, Dpseudo, and Draw represent sets of RGB images, pseudo

ground-truth dense depth maps, and raw sparse depth maps respec-

tively. Msky is a binary mask indicating each pixel location can be

classified as sky or not in Iraw. If a pixel location (x, y) is considered

as a part of the sky, Msky(x, y) = 0. Otherwise, Msky(x, y) = 1. This

mask is obtained from Draw, where infinity depth values are regarded

as depth values for the sky.

• Similarly, the second training dataset D2 can be constructed:

D2 = {Iraw,Msky}

• Denote the DINO backbone model as fdino, the decoder backbone as

fdecoder, the first depth head as fhead1, and the second depth head as

fdepth2. Thus, we can represent the first model for training:

f1 = { ¯fdino, fdecoder, fhead1}

A bar is associated with the DINO model notation to represent the

weights are fixed. The same notation will be used onwards. The model

18

Figure 4.12: Example of performance of DINOv2 and ZoeDepth

19

f1 is trained on D1 with Mean Squared Error loss applied pixel-wise:

L1 =
1

wh

w∑
x=1

h∑
y=1

(dpseudo(x,y) ·msky(x,y) − f1(iraw)(x,y))
2

w and h are the width and height of the image. The training gives us

the weights of the decoder (wdecoder) and first depth head (whead1).

• By fixing the weights of fdino and fdecoder, we can construct the second

model:

f2 = { ¯fdino, ¯fdecoder, fhead2}

The model f2 is trained on D2 with binary cross-entropy loss applied

pixel-wise:

L2 = −
1

wh

w∑
x=1

h∑
y=1

[
msky(x,y) log(f2(iraw)(x,y)) + (1−msky(x,y)) log(1− f2(iraw)(x,y))

]
The training gives us the weights of the second depth head (whead2).

• For inference on a single RGB image I, ¯fdino and ¯fdecoder are first used

to generate a vector embedding edecoder. edecoder is then fed into ¯fhead1

and ¯fhead2 simultaneously, generating a estimated metric depth d̃ and

a mask for the sky msky. The final estimated metric depth map d can

be determined by:

d̃(msky == 0) =∞

d = d̃

A more detailed illustration of the model can be found in Figure 4.13.

20

Figure 4.13: Depth Estimation Model Structure

21

5 RESULTS

5.1 Dataset

To train the monocular depth estimation model, we use a total of 5855 frames

collected in agricultural fields, from the dataset [22], of which 1298 are for

under-canopy scenes. Figure 4.2 is an example of under-canopy scenes, while

Figure 4.12 is an example of above-canopy scenes. We retrieve the RGB

image, sparse depth map, and camera pose from the dataset. Applying the

method described in Section 4.2.1, pseudo ground-truth depth maps and

masks for sky classification can be generated. The camera pose is used in

the dynamic view synthesis model.

5.2 Performance of Monocular Depth Estimation

The training and test results of f1 and f2 are show in Table 5.1. Combining

both models to generate metric depth map predictions results in an MSE

against the psuedo ground-truth labels of around 0.003, measured on the

test split. Some predicted depth maps are shown in Figure 5.1.

We also run the model on 1000 random frames with size 700×392 included

in the dataset, and find the average inference time is around 43 ms per frame

using a RTX 2080 GPU.

Table 5.1: Training and test results of monocular depth estimation models

f1 f2
Training Loss 0.000245 0.022228
Test Loss 0.000282 0.022253

22

Figure 5.1: Example of depth maps produced by the monocular depth
estimation model

23

5.3 Performance of Dynamic View Synthesis

By combining the monocular depth estimation model and dynamic view syn-

thesis model, we evaluate the final result produced by the overall architecture.

Similar to the metrics presented in the work [2], we choose to evaluate the

model by using RMSE, PSNR, SSIM, and LPIPS between the ground-truth

frame fn+1 and predicted frame f̂n+1.

• RMSE (Root Mean Square Error): The root mean squared error

evaluated on pixel-wise between two images

• PSNR (Peak Signal-to-Noise Ratio): An expression for the ratio

between the maximum possible power of a signal and the power of

corrupting noise that affects its fidelity

• SSIM (Structural Similarity Index Measure): A method for mea-

suring the similarity between two images, focusing on structural infor-

mation, luminance, and contrast

• LPIPS (Learned Perceptual Image Patch Similarity): A metric

that uses deep neural networks to assess the perceptual similarity be-

tween two images, reflecting more accurately human visual perception

compared to traditional metrics

Table 5.2 shows the average result after examining 1000 frames with and with-

out the monocular depth estimation model respectively. The result proves

that more accurate depth maps with the monocular depth estimation model

can greatly improve the result. Figure 5.2 and 5.3 provide the intuitive com-

parison.

The result is worse compared with the one given in the work [2], as shown in

5.3. However, the authors make several unrealistic assumptions during eval-

uation that result in an unfair advantage. Firstly, they rely on ground-truth

depth map collected in the simulator. Our estimated depth map cannot reach

such accuracy as the depth sensor data can be incredibly noisy. Secondly,

the dataset they use does not contain many scenes from field environments,

which implies that object motions are mostly not random. Nevertheless,

in our case, random motions of objects, such as leaves of corn stalks, can

severely affect the estimation of optical flow that represents object motions.

24

Table 5.2: Quantitative results of the dyanmic view synthesis model

RMSE↓ PSNR↑ SSIM↑ LPIPS↓
With M.D.E 40.3618 16.021 0.4799 0.375
Without M.D.E 94.0811 8.6872 0.1909 0.8357

Table 5.3: Reported metrics from DeCOMPnet

RMSE↓ PSNR↑ SSIM↑ LPIPS↓
20.68 30.60 0.9314 0.0634

Regarding the timing anaylsis, experiments show that it takes on average

about 2.3 seconds to predict a frame with size 700× 392 using a RTX 2080

GPU.

25

Figure 5.2: Example result from the dynamic synthesis model with dense
depth estimation. From top to bottom, frame fn, ground-truth frame fn+1,
and predicted frame f̂n+1 respectively

26

Figure 5.3: Example result from the dynamic synthesis model without
dense depth estimation. From top to bottom, frame fn, ground-truth frame
fn+1, and predicted frame f̂n+1 respectively

27

6 CONCLUSION AND FUTURE WORK

In this thesis, we have embarked on an exploration of enhancing teleopera-

tion experiences through advanced video processing techniques, culminating

in the proposal of a dynamic view synthesis model. This model is uniquely

designed to operate within complex field environments, aiming to signifi-

cantly improve the fluidity of video sequences by increasing their frame rate.

A pivotal component of our approach is the integration of an efficient monoc-

ular depth estimation model, designed to overcome the prevalent challenge of

obtaining accurate depth maps from onboard cameras—a common limitation

in teleoperated systems.

Our work has led us to develop a system that not only promises to enhance

the quality of teleoperation video feeds but also opens the door to further

advancements in real-time application scenarios. However, the path forward

requires a meticulous investigation into the model’s feasibility for real-time

execution on field robots. The inference time (2.3 seconds) to run the com-

plete model on a single frame is not optimal, especially when the typical

delay for video sequences is limited to 100 ms. This entails a series of rigor-

ous experiments designed to evaluate the model’s performance and efficiency

in live operational contexts. Further investigations on model structures and

complexity are also needed.

One of the significant barriers in validating and refining the depth esti-

mation component of our model is the inherent difficulty in validating its

accuracy without access to ground-truth depth maps, especially in complex

field environments. This challenge necessitates the development of innovative

evaluation methods that can reliably assess the performance of the monocu-

lar depth estimation model under these constraints. Crafting such methods

will be essential for advancing our understanding and capabilities in depth

perception within unstructured environments, thereby enhancing the model’s

overall effectiveness and reliability.

Looking ahead, the potential applications of our dynamic view synthesis

28

model extend beyond immediate improvements in video frame rate for tele-

operation. By incorporating further designs to predict future camera poses

instead of given ground-truth ones, we can further expand the model’s util-

ity to video predictions. This capability can revolutionize how teleoperated

systems interact with their environment, enabling more seamless and intu-

itive control by predicting and adjusting to future states. Such advancements

hold the promise of significantly reducing the cognitive load on operators and

improving the operational efficiency and safety of teleoperated systems.

29

REFERENCES

[1] O. Wiles, G. Gkioxari, R. Szeliski, and J. Johnson, “Synsin: End-to-end
view synthesis from a single image,” 2020.

[2] N. Somraj, P. Sancheti, and R. Soundararajan, “Temporal view
synthesis of dynamic scenes through 3d object motion estimation
with multi-plane images,” in 2022 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). IEEE, Oct. 2022. [Online].
Available: http://dx.doi.org/10.1109/ISMAR55827.2022.00100

[3] M. Oliu, J. Selva, and S. Escalera, “Folded recurrent neural networks
for future video prediction,” 2018.

[4] J.-T. Hsieh, B. Liu, D.-A. Huang, L. Fei-Fei, and J. C. Niebles, “Learn-
ing to decompose and disentangle representations for video prediction,”
2018.

[5] R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee, “Learning to
generate long-term future via hierarchical prediction,” 2018.

[6] A. K. Akan, E. Erdem, A. Erdem, and F. Güney, “Slamp: Stochastic
latent appearance and motion prediction,” 2021.

[7] R. Mahjourian, M. Wicke, and A. Angelova, “Geometry-based next
frame prediction from monocular video,” 2017.

[8] P. P. Srinivasan, R. Tucker, J. T. Barron, R. Ramamoorthi, R. Ng,
and N. Snavely, “Pushing the boundaries of view extrapolation with
multiplane images,” 2019.

[9] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for
view synthesis,” 2020.

[10] J.-H. Cho, W. Song, H. Choi, and T. Kim, “Hole filling method for
depth image based rendering based on boundary decision,” IEEE Signal
Processing Letters, vol. 24, no. 3, pp. 329–333, 2017.

[11] J. S. Yoon, K. Kim, O. Gallo, H. S. Park, and J. Kautz, “Novel view syn-
thesis of dynamic scenes with globally coherent depths from a monocular
camera,” 2020.

30

[12] C. Gao, A. Saraf, J. Kopf, and J.-B. Huang, “Dynamic view synthesis
from dynamic monocular video,” 2021.

[13] V. Kanchana, N. Somraj, S. Yadwad, and R. Soundararajan, “Revealing
disocclusions in temporal view synthesis through infilling vector predic-
tion,” 2021.

[14] S. Farooq Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth
estimation using adaptive bins,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, June 2021.
[Online]. Available: http://dx.doi.org/10.1109/CVPR46437.2021.00400

[15] S. F. Bhat, I. Alhashim, and P. Wonka, “Localbins: Improving depth
estimation by learning local distributions,” 2022.

[16] J.-H. Lee and C.-S. Kim, “Monocular depth estimation using relative
depth maps,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 9721–9730.

[17] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Müller, “Zoedepth:
Zero-shot transfer by combining relative and metric depth,” 2023.

[18] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khali-
dov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, M. Assran, N. Bal-
las, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li, I. Misra, M. Rab-
bat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut,
A. Joulin, and P. Bojanowski, “Dinov2: Learning robust visual features
without supervision,” 2024.

[19] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
2021.

[20] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely, “Stereo magni-
fication: Learning view synthesis using multiplane images,” 2018.

[21] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for
dense prediction,” 2021.

[22] J. Cuaran, A. E. B. Velasquez, M. V. Gasparino, N. K. Uppalapati,
A. N. Sivakumar, J. Wasserman, M. Huzaifa, S. Adve, and
G. Chowdhary, “Under-canopy dataset for advancing simultaneous
localization and mapping in agricultural robotics,” The International
Journal of Robotics Research, vol. 0, no. 0, p. 02783649231215372, 0.
[Online]. Available: https://doi.org/10.1177/02783649231215372

31

