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ABSTRACT

The method of generating new views of a scene from novel perspectives,
known as view synthesis, has seen remarkable progress thanks to advances
in computer vision, machine learning, and graphics. This technology is in-
creasingly being applied in various fields, including autonomous vehicles and
robotics. For instance, robots equipped with view synthesis capabilities can
be deployed in hazardous or inaccessible environments for inspection and
surveillance tasks. Synthesizing views from limited input images can provide
comprehensive visual information to make informed decisions without being
physically present. This senior thesis delves into the development and impor-
tance of dynamic view synthesis techniques, focusing on their critical role in
robotics, especially for enhancing the video frame rate during the teleopera-
tion of agricultural robots. This application is crucial for remote operators to
make timely and informed decisions. A new method is proposed that merges
existing dynamic view synthesis techniques with monocular depth estimation
to generate more accurate predictions under low communication bandwidth
settings. Predicted images are fed to a remote operator to increase the frame
rate of the video feed. Initial results on a large offline dataset collected from
the field suggest the technique’s viability, and additional real-world robot
experiments are planned for the near future to test its real-time operational

capability.

Subject Keywords: Agricultural Robots; Teleoperation System; Computer

Vision; View Synthesis; Monocular Depth Estimation
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INTRODUCTION

1.1  Motivation

The term teleoperation refers to the remote control of machines or systems
from a distance, where the operator is not physically present at the site of
the machine. This technology is typically used in environments that are haz-
ardous, inaccessible, or too remote for direct human intervention, such as
deep-sea exploration, space missions, or robotic surgery. Teleoperation sys-
tems often include cameras and sensors to provide the operator with real-time
feedback, enhancing control and interaction despite the physical separation.

Teleoperation systems can also be deployed in agricultural field environ-
ments to control agricultural robots. However, similar to other applications,
teleoperation systems in fields suffer from significant latency. Latency typi-
cally occurs for the data transmission between robots and the base station.
For instance, images transmitted back from the robot can be delayed, and
the operator’s command cannot be processed by the robot timely. The re-
duction of latency can lead to improvements in both user experience and
safety considerations. Especially when agricultural robots are deployed in
dynamic and complex field environments, latency can introduce significant
risks, undermining the operator’s ability to make timely decisions and react
to unforeseen events. Where the robots travel through rows of stalks, large-
scale leaves and branches can partially block the camera. With significant
latency, the operator will fail to prevent accidents or damage, posing a di-
rect threat to the safety of both the operational environment and the robot
itself. Therefore, addressing latency is essential not only for enhancing the
efficiency and reliability of teleoperated systems but also for ensuring the
safety and success of missions in complex, unstructured field environments.

As such, one direction of works rely on view synthesis to address this issue.
View synthesis is a technique in computer graphics and vision that involves

generating new images of a scene from viewpoints that were not originally



captured by cameras. This process uses existing images or video frames along
with depth information or geometric data about the scene to interpolate or
extrapolate new views. View synthesis techniques can be used to increase the
frame rate of video sequences at the base station. After the updated robot
pose is transmitted back to the base station, we can immediately predict
the updated frame without waiting to receive it from the robot, thereby
improving the effectiveness of monitoring and manipulating field robots.
Predicting future frames in a video sequence conditioned on past images
is challenging in unstructured field environments. Recent work on video
prediction achieves excellent performance by leveraging the use of geomet-
rical information of the environment. SynSin [1], a view synthesis model,
is commonly used to extract the 3D geometry of the world from a single
image. However, verified thorough experiments, training the SynSin model
on images collected in fields does not provide promising results as expected,
partially due to complex and unstructured features from field environments.
Therefore, we searched for other geometry-based methods and landed on the
work by Nagabhushan et al.[2], where the authors apply optical flow and
multi-plane images to accurately predict object motion, eventually assisting
in forming future frames. Nevertheless, their work is only evaluated on data
collected from simulators, which implies the availability of accurate depth
maps that are not presented in field environments. Thus, additional work
can be done to produce accurate depth map by using techniques such as

monocular depth estimation.

1.2 Contributions

We present the following contributions:

e We refine an existing framework of dynamic view synthesis to be applied

in unstructured field environments.

e We build upon the state-of-art monocular depth estimation model, de-
veloping a more efficient framework to estimate metric depth in un-
structured field environments, and incorporate it within the view syn-

thesis model.



RELATED WORKS

2.1 Video Prediction

In recent years, learning-based strategies for video prediction have demon-
strated significant promise, as evidenced by a series of studies [3, 4, 5]. Within
this domain, a considerable portion of research has achieved success in the
specific area of temporal video prediction. This concept revolves around
the prediction of future video frames over a brief timeframe. For instance,
research indicated by Villegase et al.[5] introduces methodologies that prior-
itize predicting the overarching structure of future frames rather than their
individual pixels, yielding encouraging outcomes.

However, a common limitation among these studies is the presumption
of a static background, implying that objects within the scene remain mo-
tionless over short intervals. To address the challenges posed by dynamic
backgrounds, certain approaches have adopted optical flow techniques [6].
This method allows for the separate estimation of pixel velocities for both
dynamic and static objects, facilitating the construction of predicted frames.
Yet, this strategy is limited to considering the movement of pixels across the
2D plane of the image, neglecting the 3D geometry of the scene.

In addition to methods based on optical flow, some researchers have ex-
plored geometry-based frameworks for temporal video prediction [7]. These
methodologies typically leverage depth data, RGB frames, and accurate pre-
dictions of camera movements in the future. Such approaches share similar-
ities with the objectives of view synthesis. However, in contrast to temporal
view synthesis, which employs both camera motion and depth information,
temporal video prediction models often exclude these critical elements. In-
stead, the focus of temporal view synthesis is on utilizing camera movements
to specifically predict the local motion of objects, distinguishing it from the

broader aims of temporal video prediction.



2.2 View Synthesis

View Synthesis is the process of creating an image from a new viewpoint
using one or more images from different viewpoints. These models usually
require the camera’s position to be known, while the depth remains to be
determined. Depth can be learned either by directly estimating it or through
indirect methods like Multiplane Images (MPI) [8] or the more recent Neural
Radiance Fields (NeRF) [9] techniques, which have shown promising results
in view synthesis. Depth Image Based Rendering (DIBR) [10] models, on
the other hand, operate under the assumption that depth information is
available, using a warp-and-infill strategy to address disocclusions, with some
methods focusing on removing foreground objects to reconstruct and infill the
background before applying motion compensation.

Various strategies have been explored for temporal view synthesis, which
deals with static scenes, and dynamic view synthesis, which focuses on creat-
ing video frames of a dynamic scene from a new viewpoint. These methods
include leveraging both single-view and multi-view depth information [11],
employing static and dynamic versions of NeRF [12], and utilizing MPI rep-
resentations. However, these methods generally assume the scene does not
change between views and do not account for object motion.

Somraj et al. combine the idea of optical-flow based methods of video pre-
diction and recent work of view synthesis to construct a novel dynamic view
synthesis model by decoupling camera and object motion [2]. However, their
work assumes that ground-truth depth information is available at every time
step, which is not a valid assumption for most robotics applications. Espe-
cially in extremely unstructured environments, depth information captured

by cameras is usually corrupted.

2.3 Image and Video Inpainting

View synthesis methods usually face the challenge of generating unseen parts
in the 3D world when the camera moves to new poses. In the setting of view
synthesis, the step of warping a current frame image to a new image based
on future camera pose and depth information is crucial. However, the image

after warping may contain holes because some regions become unobstructed



in the new frame. Kanchana et al. show that the disoccluded pixels can be
infilled by copying intensities from around pixels given that temporal view

synthesis considers closely adjacent frames [13].

2.4 Monocular Depth Estimation

2.4.1 Single-Image Depth Estimation (SIDE)

Supervised techniques for inferring depth from a single image generally fall
into two categories: those that estimate metric depth [14, 15] and those
focused on relative depth [16]. Metric depth models, often trained on specific
datasets, tend to be more prone to overfitting and usually struggle to adapt
to new settings or varying depth scales. Conversely, relative depth models,
trained across a broader range of datasets with annotations of relative depth
and employing scale-invariant losses, boast greater adaptability. However,
their utility is limited in scenarios requiring precise metric depth information,
as they yield depth estimates without a specific scale or shift.

In a novel approach, Bhat and colleagues have merged the methodologies
of these two approaches to create a depth estimation model named ZoeDepth
[17]. This model stands out for its superior ability to generalize across dif-
ferent environments while preserving metric scale accuracy. However, the
model’s complexity leads to prolonged inference times, rendering it imprac-

tical for applications needing to enhance frame rates in real-time.

2.4.2 DINOv2

DINOv2 [18], building on the self-supervised learning framework of its pre-
decessor, DINO [19], represents the state-of-the-art for monocular relative
depth estimation. While not specifically designed for depth estimation, DI-
NOvV2’s sophisticated learning framework offers valuable tools for improving
accuracy and generalization in monocular depth estimation models. By lever-
aging its advanced capabilities in learning rich visual representations without
labeled data, DINOv2 could significantly improve feature extraction, making
it adept at identifying depth-related cues from single images. Its potential

for self-supervised learning addresses the challenge of scarce labeled depth



data, allowing for effective scaling of training processes. Furthermore, the
transferability of the learned features to depth estimation tasks, possibly aug-
mented by attention mechanisms, could enhance model performance across
varied environments and conditions. However, with its limitation of relative
depth estimation, the model along can hardly be applied to our application.
Similar to ZoeDepth, it suffers from the problem of long inference time to be

run in real-time.



BACKGROUND

3.1 Problem Formulation

The task of applying dynamic view synthesis for frame rate upsampling by

k times can be formulated as below:

e Given previous frames { f,_ak, .-, fa—k, fn}, corresponding depth maps
{dn—aky -y dn_, dp }, extrinsic camera poses { T, _ak, ..., T, Tp }, cam-
era intrinsic matrix K, and future extrinsic camera poses {T, 11, T\12,
eory Tnak—1}, predict {fni1, faa2, oo fnik—1}- a represents the number

of past frames we consider.

e In this thesis, by considering the computational constraint in real-time,
we simplify this problem formulation by setting a = 1 and k = 2. Thus,
the task becomes: Given previous frames {f, o, f,}, corresponding
depth maps {d,,_»,d, }, extrinsic camera poses {T,,_o, T, }, camera in-

trinsic matrix K, and future extrinsic camera poses {T,.1}, predict

{fn+1}'

— For the problem formulation we define, the previous frame f,_; is
not given as it is a frame that should be predicted by the model

at the previous time step.

3.2 Temporal View Synthesis

We now describe the problem formulation of temporal view synthesis. For
the basic task of temporal view synthesis, we assume the scene is static and
objects are stationary, which means motion in the video only comes from

egomotion (camera motion).



e Given the current frame f,,, the corresponding depth map d,,, and trans-
formation matrix of the camera T, from f, to f,.1, the goal is to

predict the frame f,, ;.

e To predict f,.1, we can warp homogeneous pixel coordinates in f, to

fni1 by using the transformation matrix and depth map:

Poi1 = KG{THF{dn(pn)K_lpn}} (3.1)

P» is a 2D pixel homogeneous location of the frame f,,. K is the camera
intrinsic matrix. Functions F' and G represent the transformation from
3x1to4x1 vectors and vice versa. By performing this operation, pixel
intensities in f,, 41 can be estimated for regions that can be mapped to
fn. Besides these known regions, there are other pixels which cannot
be interpolated from f,,, due to the fact that those regions in the 3D

world are not in the view of the camera in f,.

For our problem statement we cannot directly apply this solution of view

synthesis since it is invalid to assume objects in agricultural fields are static.

3.3 Multi-Plane Images (MPI)

Our work is based on the dynamic view synthesis model proposed by Som-
raj et al. [2], in which the authors apply the idea of MPI representation,
originally introduced by Zhou et al. [20], when estimating optical flow.
Zhou et al. introduced the concept of expanding a 2D RGB frame into a
multi-plane image consisting of several RGBA planes positioned at varying
depths. In each plane, the alpha channel (a, ranging from 0 to 1) indicates
the presence of scene elements at that specific depth. Somraj etc. generate
the MPI directly using an RGB-D image, leveraging the depth information
it provides. To do this, they uniformly select Z planes across the inverse
depth range from the scene’s minimum to maximum depths. At every pixel
location x, they assign o = 1 to the plane that is closest to the actual
depth of x, while setting o« = 0 in all other planes, effectively creating a
one-hot vector of a values at each location x. We enhance the MPI format

to include actual depth values in an extra channel, alongside the existing



[ [*" Plane4

Plane3

=
[V Planel

"; Plane 2

Y
RGB-D Frame +— Camera

el

Figure 3.1: Example of MPI representation [2]

RGBA channels. Thus, the MPI format is represented as m,, = {c,, d,, a, },
where ¢,, d,, and «, correspond to the RGB, depth, and alpha channels,
respectively. For warping an MPI to a different camera perspective, Somraj
et al. utilize reprojection and bilinear splatting techniques [13] similar to the
one used by temporal view synthesis discussed in 3.2. Lastly, to compose
a 2D frame from an MPI, they apply alpha compositing in a back-to-front

sequence using the established over operation [20].



METHODOLOGY

4.1 Dynamic View Synthesis Model

We adapt the work of Somraj et al. [2] to implement dynamic view synthesis
by generally following the approach described below.

As mentioned in Section 3.1, initially we are given the RGB images { f,,_2, f.},
camera intrinsic matrix K, camera poses {T,,_2, Ty, T,+1}, and depth maps
{dy—2,d,}. The goal is to predict f,,1.

Algorithm 1 Dynamic View Synthesis Algorithm

My, < MPI(f,,d,)
My—9 < MPI(f,—2,d,—2) > Create MPI representations for f, and f, o

m¥ o < Warp(T,_o, T, my_2) > Warp m,,_» in the view of T,
W,—n—2 < 3D optical flow between m,, and m}_,

Uy, sni1 < interpolate(u, ., 2) > Interpolate future object motion
my < Warp(Thi1, T, mp) > Warp m,, in the view of T, 1
Mpt1 — Uponr1 + 100 > Combine object motion with my

fni1 < infilling and alpha composition from M,

Figure 4.1 provides a details of the model structure.

Jn—k
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w
Mk | Pose Warp  'm—k Estimate 3D Past n—n—k Predict 3D Future
Create MPI A — : . 7 i .
to view T, Object Motion Object Motion
n—k m, 1
] R
Wnntit Frrw
" - 5
Add Camera Motion Unntk’ Warp MPT with Mokt Infill Mn ! Alpha
Create MPI . ™ . : [ A 7 iy
from view T, to T, 45 predicted motion Disocclusions Compositing

| m, I

Figure 4.1: Flow diagram of the dynamic view synthesis model [2]
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4.2 Monocular Depth Estimation Model

The dynamic view synthesis model requires accurate depth maps, which are
difficult to acquire in agricultural fields, as the unstructured environment
causes the cameras to record noisy, oftentimes sparse, depth data, as shown
in Figure 4.3. Thus, we decide to apply monocular depth estimation models
to obtain dense depth.

The aforementioned two monocular depth estimation models ZoeDepth
[17] and DINOv2 [18] both have their advantages and disadvantages. The
most significant issue is the inference time. For both models, the inference
time on a single RGB image with size 1280 x 720 is around 2 seconds, using a
RTX 2080 GPU, which is not feasible to run in real-time. In terms of quality
of the results, ZoeDepth and DINOv2 slightly differ. DINOv2 outperforms
ZoeDepth in terms of estimating depth for tiny features, given its robuts
feature extraction model. However, one obvious disadvantage of DINOv2 is
that it can only estimate relative depth. Comparison of their performance
can be drawn visually from Figure 4.4 and 4.5.

Therefore, we decide to adapt the backbone of DINOv2 and apply some
modifications to decrease the inference time, which will be further discussed
in section 4.2.2. Before we can train the model, we need to have access to
ground-truth depth maps, but it is impossible to obtain dense depth maps
for unstructured field environments, as mentioned before. As a result, we
leverage ZoeDepth and DINOv2 to build pseudo ground-truth depth maps

In meters.

4.2.1 Pseudo Ground-truth Depth Map

For a single RGB image, given DINOv2, we can obtain an accurate relative
depth map d,. Relative depth map is constructed with depth values between
0 and 1 {0 < d,(z,y) < 1}. Given ZoeDepth, we can obtain a less accurate
metric depth d,,. Given the internal attributes of relative and metric depth,
all the depth values in d,. should form a linear relationship with corresponding
depth values in d, if both depth maps are accurate. Thus, using a linear

regression model, we can fit a linear function that relates d, and d,, for every
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Figure 4.2: RGB image
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Figure 4.3: Sparse depth map from the camera; White spots are holes that
cannot be predicted by the camera
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Figure 4.4: Metric depth estimation from ZoeDepth
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Metric Depth v.s. Relative Depth
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Figure 4.6: Metric depth and relative depth (DINOv2 and ZoeDepth, Avg)

RGB image in the dataset respectively:

To form the final pseudo ground-truth depth map, we apply the function f(-)

to d, and obtain dpseudo- Figure 4.8 shows an example of the result.
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Metric Depth v.s. Relative Depth
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Figure 4.7: Metric depth and relative depth (DINOv2 and ZoeDepth, Raw)
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Figure 4.8: Example of the pseudo ground-truth depth map
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Metric Depth v.s. Relative Depth
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Figure 4.9: Metric depth and relative depth (DINOv2 and sparse depth,
Avg)

Originally, one relative depth value can correspond to multiple metric
depth values, as shown in Figure 4.7, which is foreseeable since the two depth
maps are generated by two different models. We cannot guarantee there is
a one-to-one mapping between relative and metric depth. As a result, the
fitted line will be affected by some noisy data points. Therefore, for every
relative depth, we average its corresponding metric depth values and fit a
linear relationship based on that as shown in Figure 4.6.

Either using averaged or raw data, we we are unable to replace d,,, the
metric depth from ZoeDepth, with d,.,, which is the original metric depth
map collected by the depth camera. This conclusion is based on experiments
that intend to fit a linear relationship between d, and d,,,. Due to the
sparsity and noisiness of d,q.,, a linear function can hardly be solved. Results

are shown in Figure 4.9 and Figure 4.10.

4.2.2 Modifications based on DINOv2

The general structure of DINOv2 model can be summarized as follows. The
model follows the popular encoder-decoder architecture. The encoder, also

known as the DINO backbone, is the key part that is used to learn numerous
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204 Original Data
—— Fitted Line

15 A

10 A

Metric Depth Value [m]

T T
0.0 0.2 0.4 0.6 0.8 1.0
Relative Depth Value

Figure 4.10: Metric depth and relative depth (DINOv2 and sparse depth,
Raw)
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Figure 4.11: DPT model structure [21]

features from a single RGB images. The decoder, also known as the DPT
head, is originally adapted from [21]. The major role of the decoder is to
decode encoded features to dense image output by using a convolutional
neural network.

As the DINO backbone proves to be powerful for learning features from
images, we choose to keep it unchanged in our model. In addition, since one
of our goals is to minimize the model inference time, we adapt the smallest
pretrained backbone, vits14. For the decoder part, we reduce the number of

convolutional layers for the Fusion block and modify the structure of final
depth head, denoted as Head.
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We design two distinct architectures for the depth head for two different
purposes. The first task is metric depth estimation. Additionally, due to
limitations of DINOv2 and ZoeDepth, both models cannot produce satisfying
results when estimating depth of objects far from the camera, particularly,
depth for the sky. Figure 4.12 shows the limitation to when estimating the
depth for sky. Thus, the second task is to classify regions of the sky from
the RGB image and assign infinity depth value afterwards.

The method to build the complete depth estimation model can be sum-

marized as follow:

e Given the approach describe in 4.2.1, a training dataset D; can be

constructed:

Dl - {Iraun Dpseudm Drawa Msky}

where L4, Dpseudo, and Dy, represent sets of RGB images, pseudo
ground-truth dense depth maps, and raw sparse depth maps respec-
tively. Mgy, is a binary mask indicating each pixel location can be
classified as sky or not in I,.,. If a pixel location (z,y) is considered
as a part of the sky, My, (x,y) = 0. Otherwise, M, (x,y) = 1. This
mask is obtained from D,.,,,, where infinity depth values are regarded

as depth values for the sky.

e Similarly, the second training dataset D, can be constructed:
D2 = {Ir‘awa Msky}

e Denote the DINO backbone model as fg,,, the decoder backbone as
faecoder, the first depth head as fjeqq1, and the second depth head as

fdepth2. Thus, we can represent the first model for training:

fl = {fd;no; fdecoderu fheadl}

A bar is associated with the DINO model notation to represent the

weights are fixed. The same notation will be used onwards. The model

18
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f1 is trained on D; with Mean Squared Error loss applied pixel-wise:

w h
1 .
- _h Z Z pseudo FMsky(ay) — S (Zraw)(x,y)>2

w and h are the width and height of the image. The training gives us
the weights of the decoder (wgecoder) and first depth head (wpeqqr)-

e By fixing the weights of fino and fiecoder, We can construct the second

model:

f2 = {fd;noa fdegodera fhead2}

The model f5 is trained on D, with binary cross-entropy loss applied
pixel-wise:

1 w h
_h Z Z Mesky(x,y) 10% fZ(Zraw)(m,y)> + (1 - msky(x,y)) lOg(l - f2 (iraw)(m,y))}

r=1 y=1

w

The training gives us the weights of the second depth head (wpeqq2)-

e For inference on a single RGB image I, fd;no and fdec_oder are first used
to generate a vector embedding €gecoder- €decoder 1 then fed into Fread
and fheaqo simultaneously, generating a estimated metric depth d and
a mask for the sky myg,. The final estimated metric depth map d can

be determined by:

0

d

d(msky ==

)
d

A more detailed illustration of the model can be found in Figure 4.13.
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Figure 4.13: Depth Estimation Model Structure
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RESULTS

5.1 Dataset

To train the monocular depth estimation model, we use a total of 5855 frames
collected in agricultural fields, from the dataset [22], of which 1298 are for
under-canopy scenes. Figure 4.2 is an example of under-canopy scenes, while
Figure 4.12 is an example of above-canopy scenes. We retrieve the RGB
image, sparse depth map, and camera pose from the dataset. Applying the
method described in Section 4.2.1, pseudo ground-truth depth maps and
masks for sky classification can be generated. The camera pose is used in

the dynamic view synthesis model.

5.2 Performance of Monocular Depth Estimation

The training and test results of f; and f, are show in Table 5.1. Combining
both models to generate metric depth map predictions results in an MSE
against the psuedo ground-truth labels of around 0.003, measured on the
test split. Some predicted depth maps are shown in Figure 5.1.

We also run the model on 1000 random frames with size 700 x 392 included
in the dataset, and find the average inference time is around 43 ms per frame
using a RTX 2080 GPU.

Table 5.1: Training and test results of monocular depth estimation models

J1 fo
Training Loss | 0.000245 | 0.022228
Test Loss 0.000282 | 0.022253
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Figure 5.1: Example of depth maps produced by the monocular depth
estimation model
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5.3 Performance of Dynamic View Synthesis

By combining the monocular depth estimation model and dynamic view syn-
thesis model, we evaluate the final result produced by the overall architecture.
Similar to the metrics presented in the work [2], we choose to evaluate the
model by using RMSE, PSNR, SSIM, and LPIPS between the ground-truth

frame f, 1 and predicted frame an.

¢ RMSE (Root Mean Square Error): The root mean squared error

evaluated on pixel-wise between two images

e PSNR (Peak Signal-to-Noise Ratio): An expression for the ratio
between the maximum possible power of a signal and the power of

corrupting noise that affects its fidelity

e SSIM (Structural Similarity Index Measure): A method for mea-
suring the similarity between two images, focusing on structural infor-

mation, luminance, and contrast

e LPIPS (Learned Perceptual Image Patch Similarity): A metric
that uses deep neural networks to assess the perceptual similarity be-
tween two images, reflecting more accurately human visual perception

compared to traditional metrics

Table 5.2 shows the average result after examining 1000 frames with and with-
out the monocular depth estimation model respectively. The result proves
that more accurate depth maps with the monocular depth estimation model
can greatly improve the result. Figure 5.2 and 5.3 provide the intuitive com-
parison.

The result is worse compared with the one given in the work [2], as shown in
5.3. However, the authors make several unrealistic assumptions during eval-
uation that result in an unfair advantage. Firstly, they rely on ground-truth
depth map collected in the simulator. Our estimated depth map cannot reach
such accuracy as the depth sensor data can be incredibly noisy. Secondly,
the dataset they use does not contain many scenes from field environments,
which implies that object motions are mostly not random. Nevertheless,
in our case, random motions of objects, such as leaves of corn stalks, can

severely affect the estimation of optical flow that represents object motions.
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Table 5.2: Quantitative results of the dyanmic view synthesis model

Regarding the timing anaylsis, experiments show that it takes on average
about 2.3 seconds to predict a frame with size 700 x 392 using a RTX 2080
GPU.

RMSE]| | PSNR{ | SSIM? | LPIPS,
With M.D.E 40.3618 | 16.021 | 0.4799 | 0.375
Without M.D.E | 94.0811 | 8.6872 | 0.1909 | 0.8357

Table 5.3: Reported metrics from DeCOMPnet

RMSE|

PSNR?t

SSIMT

LPIPS|

20.68

30.60

0.9314

0.0634
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Figure 5.2: Example result from the dynamic synthesis model with dense
depth estimation. From top to bottom, frame f,, ground-truth frame f,1,
and predicted frame f, 1 respectively
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Figure 5.3: Example result from the dynamic synthesis model without
dense depth estimation. From top to bottom, frame f,, ground-truth frame
fnt1, and predicted frame f, 1, respectively
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CONCLUSION AND FUTURE WORK

In this thesis, we have embarked on an exploration of enhancing teleopera-
tion experiences through advanced video processing techniques, culminating
in the proposal of a dynamic view synthesis model. This model is uniquely
designed to operate within complex field environments, aiming to signifi-
cantly improve the fluidity of video sequences by increasing their frame rate.
A pivotal component of our approach is the integration of an efficient monoc-
ular depth estimation model, designed to overcome the prevalent challenge of
obtaining accurate depth maps from onboard cameras—a common limitation
in teleoperated systems.

Our work has led us to develop a system that not only promises to enhance
the quality of teleoperation video feeds but also opens the door to further
advancements in real-time application scenarios. However, the path forward
requires a meticulous investigation into the model’s feasibility for real-time
execution on field robots. The inference time (2.3 seconds) to run the com-
plete model on a single frame is not optimal, especially when the typical
delay for video sequences is limited to 100 ms. This entails a series of rigor-
ous experiments designed to evaluate the model’s performance and efficiency
in live operational contexts. Further investigations on model structures and
complexity are also needed.

One of the significant barriers in validating and refining the depth esti-
mation component of our model is the inherent difficulty in validating its
accuracy without access to ground-truth depth maps, especially in complex
field environments. This challenge necessitates the development of innovative
evaluation methods that can reliably assess the performance of the monocu-
lar depth estimation model under these constraints. Crafting such methods
will be essential for advancing our understanding and capabilities in depth
perception within unstructured environments, thereby enhancing the model’s
overall effectiveness and reliability.

Looking ahead, the potential applications of our dynamic view synthesis
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model extend beyond immediate improvements in video frame rate for tele-
operation. By incorporating further designs to predict future camera poses
instead of given ground-truth ones, we can further expand the model’s util-
ity to video predictions. This capability can revolutionize how teleoperated
systems interact with their environment, enabling more seamless and intu-
itive control by predicting and adjusting to future states. Such advancements
hold the promise of significantly reducing the cognitive load on operators and

improving the operational efficiency and safety of teleoperated systems.

29



REFERENCES

1]

2]

[5]

[6]

[7]

8]

O. Wiles, G. Gkioxari, R. Szeliski, and J. Johnson, “Synsin: End-to-end
view synthesis from a single image,” 2020.

N. Somraj, P. Sancheti, and R. Soundararajan, “Temporal view
synthesis of dynamic scenes through 3d object motion estimation
with multi-plane images,” in 2022 IEEFE International Symposium on
Mized and Augmented Reality (ISMAR). IEEE, Oct. 2022. [Online].
Available: http://dx.doi.org/10.1109/ISMAR55827.2022.00100

M. Oliu, J. Selva, and S. Escalera, “Folded recurrent neural networks
for future video prediction,” 2018.

J.-T. Hsieh, B. Liu, D.-A. Huang, L. Fei-Fei, and J. C. Niebles, “Learn-
ing to decompose and disentangle representations for video prediction,”
2018.

R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee, “Learning to
generate long-term future via hierarchical prediction,” 2018.

A. K. Akan, E. Erdem, A. Erdem, and F. Giiney, “Slamp: Stochastic
latent appearance and motion prediction,” 2021.

R. Mahjourian, M. Wicke, and A. Angelova, “Geometry-based next
frame prediction from monocular video,” 2017.

P. P. Srinivasan, R. Tucker, J. T. Barron, R. Ramamoorthi, R. Ng,
and N. Snavely, “Pushing the boundaries of view extrapolation with
multiplane images,” 2019.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for
view synthesis,” 2020.

J.-H. Cho, W. Song, H. Choi, and T. Kim, “Hole filling method for
depth image based rendering based on boundary decision,” IFEE Signal
Processing Letters, vol. 24, no. 3, pp. 329-333, 2017.

J. S. Yoon, K. Kim, O. Gallo, H. S. Park, and J. Kautz, “Novel view syn-
thesis of dynamic scenes with globally coherent depths from a monocular
camera,” 2020.

30



[12]

[13]

[14]

[19]

[20]

[21]

C. Gao, A. Saraf, J. Kopf, and J.-B. Huang, “Dynamic view synthesis
from dynamic monocular video,” 2021.

V. Kanchana, N. Somraj, S. Yadwad, and R. Soundararajan, “Revealing

disocclusions in temporal view synthesis through infilling vector predic-
tion,” 2021.

S. Farooq Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth
estimation using adaptive bins,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 1EEE, June 2021.
[Online]. Available: http://dx.doi.org/10.1109/CVPR46437.2021.00400

S. F. Bhat, I. Alhashim, and P. Wonka, “Localbins: Improving depth
estimation by learning local distributions,” 2022.

J.-H. Lee and C.-S. Kim, “Monocular depth estimation using relative
depth maps,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 9721-9730.

S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Miiller, “Zoedepth:
Zero-shot transfer by combining relative and metric depth,” 2023.

M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khali-
dov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, M. Assran, N. Bal-
las, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li, I. Misra, M. Rab-
bat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut,
A. Joulin, and P. Bojanowski, “Dinov2: Learning robust visual features
without supervision,” 2024.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
2021.

T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely, “Stereo magni-
fication: Learning view synthesis using multiplane images,” 2018.

R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for
dense prediction,” 2021.

J. Cuaran, A. E. B. Velasquez, M. V. Gasparino, N. K. Uppalapati,
A. N. Sivakumar, J. Wasserman, M. Huzaifa, S. Adve, and
G. Chowdhary, “Under-canopy dataset for advancing simultaneous
localization and mapping in agricultural robotics,” The International
Journal of Robotics Research, vol. 0, no. 0, p. 02783649231215372, 0.
[Online]. Available: https://doi.org/10.1177/02783649231215372

31



